TY - GEN
T1 - A novel metamaterial CRLH ZOR microstrip patch antenna capacitively coupled to a rectangular ring
AU - Jang, Geonho
AU - Kahng, Sungtek
AU - Ju, Jeongho
AU - Anguera, J.
AU - Choi, J.
PY - 2010
Y1 - 2010
N2 - In this paper, a novel rectangular patch antenna is proposed to have Zeroth Order Resonance(ZOR) generated based on the Metamaterial Complosite Right- and Left-Handed(CRLH) structure. Making the in-phase electric field over the entire antenna other than a half-wavelength as the fundamental resonance mode of a standard microstrip patch or its positive multiple, the metallic patch is suggested to be capacitively coupled with only one surrounding rectangular ring, different from the previous 1D ZOR antennas commonly having several metal cells in line. The performance of the proposed antenna is simulated by a 3D field solver that inputs the sizes of the physical structure corresponding to the equivalent circuit designed to have ZOR at 2.4 GHz. Consequently, the resonance frequency, the gain and the antenna efficiency are observed 2.4 GHz, 5 dB and 98%, respectively. Besides, the important property of the proposed antenna is addressed as the combination of the low profile as an advantage of microstrip patch antennas, and the omni-directional field pattern typical of monopole antennas.
AB - In this paper, a novel rectangular patch antenna is proposed to have Zeroth Order Resonance(ZOR) generated based on the Metamaterial Complosite Right- and Left-Handed(CRLH) structure. Making the in-phase electric field over the entire antenna other than a half-wavelength as the fundamental resonance mode of a standard microstrip patch or its positive multiple, the metallic patch is suggested to be capacitively coupled with only one surrounding rectangular ring, different from the previous 1D ZOR antennas commonly having several metal cells in line. The performance of the proposed antenna is simulated by a 3D field solver that inputs the sizes of the physical structure corresponding to the equivalent circuit designed to have ZOR at 2.4 GHz. Consequently, the resonance frequency, the gain and the antenna efficiency are observed 2.4 GHz, 5 dB and 98%, respectively. Besides, the important property of the proposed antenna is addressed as the combination of the low profile as an advantage of microstrip patch antennas, and the omni-directional field pattern typical of monopole antennas.
KW - Low-profile
KW - Metamaterial CRLH structure
KW - ZOR antenna
UR - http://www.scopus.com/inward/record.url?scp=78349238583&partnerID=8YFLogxK
U2 - 10.1109/APS.2010.5561213
DO - 10.1109/APS.2010.5561213
M3 - Conference contribution
AN - SCOPUS:78349238583
SN - 9781424449682
T3 - 2010 IEEE International Symposium on Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting - Leading the Wave, AP-S/URSI 2010
BT - 2010 IEEE International Symposium on Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting - Leading the Wave, AP-S/URSI 2010
T2 - 2010 IEEE International Symposium on Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting - Leading the Wave, AP-S/URSI 2010
Y2 - 11 July 2010 through 17 July 2010
ER -