A learning system for adjustment processes based on human sensory perceptions

Francisco Javier Ruiz, N. Agell, Cecilio Angulo, Mónica Sánchez

Producció científica: Article en revista indexadaArticleAvaluat per experts

8 Cites (Scopus)

Resum

Creating, designing and adjusting products are essential decision processes underlying creative industries, such as painting, perfume, food and beverage industries. These processes require the participation and continuous supervision of professionals with highly-developed expert sensory abilities. Training of these experts is very complex due to the difficulty of transmitting intuitive knowledge obtained from perception. A new methodology for capturing this sensory expert knowledge that relies on a machine learning tool, previously trained with 'state-action’ type patterns, jointly with an actions generator module, is proposed in this work. The method is based on a closed loop architecture together with the decomposition of complex sensory knowledge into basic elements capable of being handled by standard machine learning systems. A real case application to color-adjustment in the automotive paint manufacturing industry is presented showing the potential benefits of the method.

Idioma originalAnglès
Pàgines (de-a)58-66
Nombre de pàgines9
RevistaCognitive Systems Research
Volum52
DOIs
Estat de la publicacióPublicada - de des. 2018
Publicat externament

Fingerprint

Navegar pels temes de recerca de 'A learning system for adjustment processes based on human sensory perceptions'. Junts formen un fingerprint únic.

Com citar-ho