TY - JOUR
T1 - 2-Keto-3-Deoxy-l-Rhamnonate Aldolase (YfaU) as Catalyst in Aldol Additions of Pyruvate to Amino Aldehyde Derivatives
AU - Hernández, Karel
AU - Gómez, Ariadna
AU - Joglar, Jesús
AU - Bujons, Jordi
AU - Parella, Teodor
AU - Clapés, Pere
N1 - Publisher Copyright:
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2017/6/19
Y1 - 2017/6/19
N2 - 4-Hydroxy-2-keto acid derivatives are versatile building blocks for the synthesis of amino acids, hydroxy carboxylic acids and chiral aldehydes. Pyruvate aldolases are privileged catalysts for a straightforward access to this class of keto acid compounds. In this work, a Class II pyruvate aldolase from Escherichia coli K-12, 2-keto-3-deoxy-l-rhamnonate aldolase (YfaU), was evaluated for the synthesis of amino acid derivatives of proline, pipecolic acid, and pyrrolizidine-3-carboxylic acid. The aldol addition of pyruvate to N-protected amino aldehydes was the key enzymatic aldol addition step followed by catalytic intramolecular reductive amination. The corresponding N-Cbz-amino-4-hydroxy-2-keto acid (Cbz=benzyloxycarbonyl) precursors were obtained in 51–95% isolated yields and enantioselectivity ratios from 26:74 to 95:5, with chiral α-substituted N-Cbz-amino aldehydes. (S)-N-Cbz-amino aldehydes gave aldol adducts with preferentially (R)-configuration at the newly formed stereocenter, whereas the contrary is true for (R)-N-Cbz-amino aldehydes. Addition reactions to achiral amino aldehydes rendered racemic aldol adducts. Molecular models of the pre-reaction ternary complexes YfaU-pyruvate enolate-acceptor aldehyde were constructed to explain the observed stereochemical outcome of the reactions. Catalytic reductive amination of the aldol adducts yielded 4-hydroxy-2-pipecolic acid, and unprecedented C-5 substituted 4-hydroxyproline and pyrrolizidine-3-carboxylic acid derivatives. (Figure presented.).
AB - 4-Hydroxy-2-keto acid derivatives are versatile building blocks for the synthesis of amino acids, hydroxy carboxylic acids and chiral aldehydes. Pyruvate aldolases are privileged catalysts for a straightforward access to this class of keto acid compounds. In this work, a Class II pyruvate aldolase from Escherichia coli K-12, 2-keto-3-deoxy-l-rhamnonate aldolase (YfaU), was evaluated for the synthesis of amino acid derivatives of proline, pipecolic acid, and pyrrolizidine-3-carboxylic acid. The aldol addition of pyruvate to N-protected amino aldehydes was the key enzymatic aldol addition step followed by catalytic intramolecular reductive amination. The corresponding N-Cbz-amino-4-hydroxy-2-keto acid (Cbz=benzyloxycarbonyl) precursors were obtained in 51–95% isolated yields and enantioselectivity ratios from 26:74 to 95:5, with chiral α-substituted N-Cbz-amino aldehydes. (S)-N-Cbz-amino aldehydes gave aldol adducts with preferentially (R)-configuration at the newly formed stereocenter, whereas the contrary is true for (R)-N-Cbz-amino aldehydes. Addition reactions to achiral amino aldehydes rendered racemic aldol adducts. Molecular models of the pre-reaction ternary complexes YfaU-pyruvate enolate-acceptor aldehyde were constructed to explain the observed stereochemical outcome of the reactions. Catalytic reductive amination of the aldol adducts yielded 4-hydroxy-2-pipecolic acid, and unprecedented C-5 substituted 4-hydroxyproline and pyrrolizidine-3-carboxylic acid derivatives. (Figure presented.).
KW - aldol reaction
KW - amino acids
KW - amino aldehydes
KW - asymmetric catalysis
KW - biocatalysis
KW - biotransformations
KW - pyruvate aldolases
UR - http://www.scopus.com/inward/record.url?scp=85019387237&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=pure_univeritat_ramon_llull&SrcAuth=WosAPI&KeyUT=WOS:000403567500008&DestLinkType=FullRecord&DestApp=WOS_CPL
U2 - 10.1002/adsc.201700360
DO - 10.1002/adsc.201700360
M3 - Article
AN - SCOPUS:85019387237
SN - 1615-4150
VL - 359
SP - 2090
EP - 2100
JO - Advanced Synthesis and Catalysis
JF - Advanced Synthesis and Catalysis
IS - 12
ER -